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Outline

Review work on improved implementation for combining transverse-momentum-
dependent (TMD) factorization and collinear factorization in semi-inclusive DIS

The result 1s a modified version of the “W+Y” prescription traditionally used in the
Collins-Soper-Sterman (CSS) formalism Collins Soper Sterman NPB 1985

Address the “standard matching prescription” traditionally used in the CSS formalism
relating low and high gt behavior of cross section @ moderate Q

In particular the role of Y term matching of low and high gt behavior of cross section
@ moderate Q

Introduce method to combine TMD and Collinear Factorization formalism

We briefly discuss how an EIC could help to further our study of matching between the
TMD approach and collinear factorization.



Comments

The standard W + Y prescription was arranged to apply also for intermediate qr; in
particular it keeps full accuracy when m << qr <<Q, a situation in which both pure TMD
and pure collinear factorization have degraded accuracy

It also did not specifically address the issue of matching to collinear factorization for the
cross section integrated over gt

With our method, the redefined W term allowed us to construct a relationship between
integrated-TMD-factorization formulas and standard collinear factorization formulas, with
errors relating the two being suppressed by powers of 1/Q.

Importantly, the exact definitions of the TMD pdfs and ffs are unmodified from the usual
ones of factorization derivations. We preserve transverse-coordinate space version of the
W term, but only modify the way in which it 1s used.



Start w/ review of CSS W + Y construction.

® The CSS formalism separates the cross section into a sum of two terms W & Y
such that W+Y give the cross section up to an error that relative to the cross
section 1s power suppressed as (m/Q)¢ where ¢ > 0

do(qr, Q)
2ard0 ...

= I"(¢q7, Q) — shorthand notation for cross section

Dim < ar < Q.Q) = W(ar, Q) + Y(ar. Q) §

® W describes the small transverse momentum behavior qr « Q and an additive
correction term Y accounts for behavior at gr ~ Q

® W is written in terms of TMD pdfs and/or TMD f{fs and is constructed to be an
accurate description in the limit of qr /Q « 1. It includes all non-perturbative

transverse momentum dependence

® The Y -term 1s described in terms of “collinear approximation” to the cross
section: it 1s the correction term for large qr~ Q



The W + Y construction

m

2 Tlar.Q)

Cim < qr < Q,Q) = Wlgr, Q) + Y (a7, Q) + O (

® The CSS construction of W +Y and the specific approximations applied, thru the
operations Ttmp and Teon work only in the regions qr <« Q and gr ~ Q respectively,
which we emphasize by the range of the argument above

mSqr S @



Matching and W + Y construction

® This was designed with the aim to have a formalism that is valid to leading power
in m/Q uniformly in gt, where m 1s a typical hadronic mass scale

® and where there is a broad intermediate range of transverse momentum
characterized by m << qr < Q 4+ Collins Soper Sterman NPB 1985

4+ A.Bacchetta, D. Boer, M. Diehl, and P. J. Mulders , JHEP (2008)
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Matching and W + Y construction

® However at lower phenomenologically interesting values of Q, neither of
the ratios gp/QQ or ™M / gT are necessarily very small and matching can be
problematic

W+Y
From Ted Rogers

A Fun stuff
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Matching and W + Y construction

This impacts studies of non-perturbative nucleon structure @ COMPASS & JLAB

mSar S @
W+Y
A Fun stuff
AN From Ted Rogers
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=W+Y 4+ O (—)

dQ? dz dz d2Pj,t @



Example
® When g7 1s above some small fraction of Q, W deviates a lot from F(QT; Q)

e Then it becomes negative and “asymptotes™ to — log
Nadowsly et al. PRD 1999, Y. Koike, J. Nagashima, and W. Vogelsang, Nucl. Phys. B744, 59 (2006), q%
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o Atlarge gr W+Y 1s then a difference of large terms and truncation errors can

be augmented
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® To get a sense of source of truncation errors we
further “unpack” W+ Y Construction




Review of Region Analysis “Approximators”
W &Y Definitions

Original CSS definition of W is given by the instruction to carryout an approximation of the cs
that 1s designed to be good 1n the region gr<< Q up to powers of gr/Q and m/Q

/

) Tlar.Q)

m

TTMDF(QTa Q) ~ F(QT < Q, Q) + O (Q_T) F(QT» Q) + O (Q

Q

Wigr,Q) = Trunl(qr, Q)

Another approximator for the “region” of qr ~Q defines FO up to powers of m/qr

m

b
Toonl'(gr, Q) = T'(gr 2 @, Q) + O ( ) I'(gr, Q)

dT

FO(qr,Q) = T..u' (g1, Q)



/ Region analysis W + Y construction

Standard method to combine W & Y is to construct a sequence of nested
subtractions. The smallest-size region 1s a neighborhood of gr = 0, where Ttmp
gives a very good approximation. So, one starts by adding and subtracting the
T'rmp approximation.

F(QT) Q) — TTMDF(QTy Q) + [F(QT7 Q) — TTMDF(QTa Q)]

-~

® The error in the bracket is order (g7/Q)* and i1s only unsuppressed at gr >> m

® One thus applies T.ou and used the fixed order (FO) perturbative expansion
see CSS 1985 NPB and JCC Cambridge Press 2011 for details

Result is the combination ... ——
Lim S ar £ Q,Q) = Trupl'(gr, Q) (g7, Q) — Trupl'(gr,

[m Sqr SQ,Q) = W(gr,Q) +Y(gr,Q) + O (g) I'(gr, Q)

qr/Q << 1 f &qr Q or m/qr<<1



Definition of the Y term

Y(QT» Q) — TcollF(QT7 Q) — 1o TMDF(C]Ta Q)

Y(QT? Q) — FO(QTv Q) _ ASY(QTa Q)

® [t is the difference of the cross section calculated with collinear pdfs and ffs at
fixed order FO and the asymptotic contribution of the cross section

® Atsmall gr the FO and ASY are dominated by the same diverging terms

1 1 2
—  and — log Q_2
dT dT 4T

® thus its expected that the Y term 1s small or zero leaving

ler < Q,Q) = Wi(qr, Q)



The Asymptotic piece of the NLO cross section

Y(qr, Q) = FO(qr,Q) — ASY (qr, Q)

/

dogy :UOFZ a, 1 A(¢,0)
dxdzdQ*dqrd ¢ Sea T 2q7 27

asym

DB/j(Z’M){(qu®fj/A)(x7lLL)+(qu®fg/A)(x’lLL)}

XZ ejz-
J
+{(DB/j®qu)(Zuu“)+(DB/g®qu)(z’lu’)}fj/A(x’lU“)

0> 3 @,
+2Dpg,i(z, ) f jya(x, 1) CFIqu_z_ECF AT
T

+ O

e Nadowsly et al. PRD 1999, Y. Koike, J. Nagashima, and W. Vogelsang, Nucl. Phys. B744, 59 (2006),



e At small gr the Y term 1s 1n principle suppressed: it 1s the difference
of the FO perturbative calculation of the cross section and the
asymptotic contribution of W for small gr

e But again there can be a difference of of large terms and truncation
errors are augmented: Here the Y term 1s larger than W?!

1.6

1.4

1.2

0.8

0.6

0

IIII|IIII|‘IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

\

- \ .
\

', HERMES (e+p ->m*+X)-
“ Q°=3.14GeV?
0.4<z <0.6

.1 0.15 0.

|
2

|
0.

Sun et al arXiv: 1406.3073

Y(QT? Q) — FO(QT? Q) _ ASY(QT? Q)



Region analysis W + Y construction

® Thus the region between large and small gt needs special treatment if errors are to
be strictly power suppressed point-by-point in gr.

W+Y

A /\Fun stuff
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Extend formalism to

qr Sm and qr 2 Q



Extend formalism to

CITSm

® For qr S ™M collinear factorization is not applicable for the differential
cross section. But this region is actually where the W-term in has its highest
validity. So one simply must ensure that the Y -term is sufficiently suppressed
in Eq. (10) for g7 Sm

Y(qr,Q) =1FO0(qr,Q) — ASY (qr, Q) } X (q7/A)

with small gr cutott

X(gr/A) =1 —exp{—(gr/N)**}



® Now we can extend the power suppression error estimate down to gr =0 to get

Mar < Q.Q) = W(ar,Q) + Y(qr, Q) + O g (qr, Q)

— AY (x=0.1,z=0.5)
— — = FO (x=0.1,z=0.5)
— Y
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Extend formalism to

qr 2,

Modification of the cross section leaves the standard
treatment of TMD factorization only slightly modified.

In particular the op. definitions along with evolution
properties are the same as in the usual formalism

We do this in two steps however now we need explicit

expression for W from JCC formalism
see Collins Rogers PRD 2015



Summary of elements of TMD factorization
See talk of Zhongbo Kang

2
W(Q%Q)‘/é:;[ " T (by, Q)

- Factorization and TMD evolution in br space >
- Solve the CSS & RG evolution Egs for W by (by) = \/ b7
term in SIDIS with “boundary condition” to 1+ b7 /bimas

freeze br above some b, and with BCs

W(qr, Q) = / %GZQT T WOPE (b, (b7), Q) Wi p (b1, Q; bmax)

WP (b, (br), Q) = Hi(Q) Cf/zf(xA/f,b*b*) @ fira(#, o, ) é 1:(2B/%,by) ® dp (2, pp)e” " (0@
Collinear pdfs

Wxp(br, Q;bmas) = eIV r (br:Qibmaz)

SNP(bTyQ; bmaw) — gA(anbT; bmaa:) + gB(ZB, bT; bma:l:) 29K<bT7 bma:c) In (5 >
0

Fourier Transforms of TMDs and universal soft function gk



Two modifications

a) Introduce small b-cuttoff

be(br) = \/b3 + b3/ (C5Q) = b.(0) ~ 1/Q

b) Introduce large gr-cuttoff so that
Wnew vanishes at large qr

=(G) = (7a) |
Q' nQ

X A2h N N
Wen(ar, @i, o) = = (1) [ Lm0 OPE (b (0 (62)), Q) Wiy (b 0r). Qs )

(bmin bT < bmin
b* (bc(bT>) — X bT bmin < bT < bmax
L bmax bT > bmax .




1) Semi-inclusive to Collinear
integrate over gr

® Parton Model W-term

WPM(QTa Q) — HLO,j’,z”(QO) /dszfj//A(fE, kT)dB/i’(Zy qr + kT)

/d2qT Wpnm(ar, Q) = Hro j,i(Qo) [ ja(x)dp i (2)

® Standard CSS W-term

d2b
Ll T css (b, Q)

Wess(qr, Q) :,/(277)

/d2QTWCSS(QT7Q) =0 |

Phys.Rev. D 94 (2016) J. Collins, L.Gamberg, A. Prokudin, N. Sato, T. Rogers, B. Wang



See appendix for details Phys.Rev. D 94 (2016)
J. Collins, L.Gamberg, A. Prokudin, N. Sato, T. Rogers, B. Wang

d?br . ~
Wcss(QT; Q) — / (277)TZ equ-bTWcss(bT, Q)

/dquWCSS(qT, Q) = /52(bT) br x logarithmic corrections

/dQQTWCSS(QTaQ) =0 !



For details Phys.Rev. D 94 (2016)
J. Collins, L.Gamberg, A. Prokudin, N. Sato, T. Rogers, B. Wang

d?br .
WNew(QT)Q) :/ﬁeuﬁ bTWNew(bTaQ)

/d2QTWNew (qr, Q) = W(bc min, @)  has anormal collinear factorization in terms

of collinear pdfs

/d2qT Wnew(qr, Q) = HLO,j’,i’fj’/A(xaMc)dB/i’(Za pe) +O(as(Q))

Has implications for modeling TMD and fitting



Large gr-cuttoft so on Wnew
vanishes at large qr

b) Introduce large gr-cuttoff so that
Wnew vanishes at large qr

=(G) = (7a) |
Q' nQ

X A2h N
Wen(ar, @i, o) = = (1) [ Lm0 OPE (b (0 (62)), Q) Wiy (b 0r). Qs )

(bmin bT < bmin
b* (bc(bT>) — X bT bmin < bT < bmax
L bmax bT > bmax .




Now Y term 1s further modified

YNew (QTa Q) — [TcollF(QTa Q) o TcollTjj“V]\Z%F(QTa Q)] X(QT/A)

= | F'O(qr, Q) — ASYNew(qr, Q)] X(gr/ M)



Putting all together

D(gr Q) ~ T2 gz Q) + Tow [Fars Q) — T2 T(gr )] + O (g) Mg, Q)

m

0 > C ['(qr, Q)

F(QTa Q) ~ WN@U}(QT? Q) + Yng(QT, Q) —+ O (



Putting all together

Cutoff Functions
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Comments

The standard W + Y prescription was arranged to apply also for intermediate gr; in
particular 1t keeps full accuracy when m << gr <<Q, a situation in which both pure TMD
and pure collinear factorization have degraded accuracy

It also did not specifically address the 1ssue of matching to collinear factorization for the
cross section integrated over gr .

With our method, the redefined W term allowed us to construct a relationship between
integrated-TMD-factorization formulas and standard collinear factorization formulas, with
errors relating the two being suppressed by powers of 1/Q.

Importantly, the exact definitions of the TMD pdfs and {fs are unmodified from the usual
ones of factorization derivations. We preserve transverse-coordinate space version of the W
term, but only modify the way in which it 1s used.

4+ This work has dealt only with unpolarized cross sections.

4+ We are studying the analogous topic applied to polarized phenomena.

4 This is central to the EIC and studying the 3-D momentum and spatial structure of the

nucleon and further exploring the connection between TMD and collinear factorization
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Expression for W(b,,0)

. Las .
W (be(br), Q) = H(ug,Q) Y | / gcffj, (@a/%, b, (be(bT)); 17, i s (7)) fr 74 (@5 1) X
grir vrA
L gz .
X/ ;jcg/j(ZB/éab*(bc(bT));ﬁQ,ﬂ, as(i1))dpyi (2 1) X
2 nQ d / 2
X exp {ln %K(b*(bc(bT)); ) + i, [2fy(ozs(lu’); 1) —1In %’YK(OKS(M/))] }
M p M M
X €XPp {—QA(SUA, bc(bT); bmax) — gB(Z37 bc(bT); bmax) - ng(bc(bT)a bmax) In (%) }

bmin bT < bmin
b*<bc(bT)) — bT bmin < bT < bmax
bmax bT > bmax .



Region analysis W+ Y construction

® If qT m and qT Q were the only regions of interest, then the TTMD and Tcoll approximators
would be sufficient. One could simply calculate using fixed order collinear factorization for the large qT-
dependence and TMD factorization for small qT-dependence.

W(QT: Q) — TTMDF(C]Ta Q)
or ...

FO(qr,Q) =T...1'(qr, Q)

® A reasonable description of the full transverse momentum dependence would be obtained by simply
interpolating between the two descriptions



Region analysis W+ Y construction

m

2 Tlar.Q)

m Sqr SQ,Q) = W(qT,Q)+Y(qT,Q)+O<

® The error estimates in Eq. are not applicable outside this range
1.e., they must not be applied when gr > Q or gr <« m

® This is because W & Y were extracted from the leading power of expansions in
relatively small kinematic variables qr/Q and m/qr to give

® However for m< qT < O(Q), the cross section given by W + Y should
appropriately match FO collinear perturbation theory calculations for large trans-
verse momentum.



